Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Monoclon Antib Immunodiagn Immunother ; 43(2): 59-66, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38593439

RESUMO

The C-X-C motif chemokine receptor-1 (CXCR1) is a rhodopsin-like G-protein-coupled receptor, expressed on the cell surface of immune cells and tumors. CXCR1 interacts with some C-X-C chemokines, such as CXCL6, CXCL7, and CXCL8/interleukin-8, which are produced by various cells. Since CXCR1 is involved in several diseases including tumors and diabetes mellitus, drugs targeting CXCR1 have been developed. Therefore, the development of sensitive monoclonal antibodies (mAbs) for CXCR1 has been desired for the diagnosis and treatment. This study established a novel anti-mouse CXCR1 (mCXCR1) mAb, Cx1Mab-1 (rat IgG1, kappa), using the Cell-Based Immunization and Screening method. Cx1Mab-1 reacted with mCXCR1-overexpressed Chinese hamster ovary-K1 (CHO/mCXCR1) and mCXCR1-overexpressed LN229 glioblastoma (LN229/mCXCR1) in flow cytometry. Cx1Mab-1 demonstrated a high binding affinity for CHO/mCXCR1 and LN229/mCXCR1 with a dissociation constant of 2.6 × 10-9 M and 2.1 × 10-8 M, respectively. Furthermore, Cx1Mab-1 could detect mCXCR1 by Western blot analysis. These results indicated that Cx1Mab-1 is useful for detecting mCXCR1, and provides a possibility for targeting mCXCR1-expressing cells in vivo experiments.


Assuntos
Anticorpos Monoclonais , Neoplasias , Cricetinae , Animais , Ratos , Citometria de Fluxo , Células CHO , Cricetulus
2.
Monoclon Antib Immunodiagn Immunother ; 43(2): 53-58, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38593441

RESUMO

The giant panda (Ailuropoda melanoleuca) is one of the important species in worldwide animal conservation. Because it is essential to understand the disease of giant panda for conservation, histopathological analyses of tissues are important to understand the pathogenesis. However, monoclonal antibodies (mAbs) against giant panda-derived proteins are limited. Podoplanin (PDPN) is an essential marker of lung type I alveolar epithelial cells, kidney podocytes, and lymphatic endothelial cells. PDPN is also overexpressed in various human tumors, which are associated with poor prognosis. Here, an anti-giant panda PDPN (gpPDPN) mAb, PMab-314 (mouse IgG1, kappa) was established using the Cell-Based Immunization and Screening method. PMab-314 recognized N-terminal PA16-tagged gpPDPN-overexpressed Chinese hamster ovary-K1 cells (CHO/PA16-gpPDPN) in flow cytometry. The KD value of PMab-314 for CHO/PA16-gpPDPN was determined as 1.3 × 10-8 M. Furthermore, PMab-314 is useful for detecting gpPDPN in western blot analysis. These findings indicate that PMab-314 is a useful tool for the analyses of gpPDPN-expressed cells.


Assuntos
Anticorpos Monoclonais , Ursidae , Cricetinae , Camundongos , Animais , Humanos , Cricetulus , Células CHO , Células Endoteliais/metabolismo , Glicoproteínas de Membrana , Especificidade de Anticorpos , Fatores de Transcrição
3.
Chem Soc Rev ; 53(8): 4154-4229, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38470073

RESUMO

Iron-based materials with significant physicochemical properties, including high theoretical capacity, low cost and mechanical and thermal stability, have attracted research attention as electrode materials for alkali metal-ion batteries (AMIBs). However, practical implementation of some iron-based materials is impeded by their poor conductivity, large volume change, and irreversible phase transition during electrochemical reactions. In this review we critically assess advances in the chemical synthesis and structural design, together with modification strategies, of iron-based compounds for AMIBs, to obviate these issues. We assess and categorize structural and compositional regulation and its effects on the working mechanisms and electrochemical performances of AMIBs. We establish insight into their applications and determine practical challenges in their development. We provide perspectives on future directions and likely outcomes. We conclude that for boosted electrochemical performance there is a need for better design of structures and compositions to increase ionic/electronic conductivity and the contact area between active materials and electrolytes and to obviate the large volume change and low conductivity. Findings will be of interest and benefit to researchers and manufacturers for sustainable development of advanced rechargeable ion batteries using iron-based electrode materials.

4.
J Cancer ; 15(3): 796-808, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38213729

RESUMO

Background: Most of the current research on prognostic model construction for non-small cell lung cancer (NSCLC) only involves in bulk RNA-seq data without integration of single-cell RNA-seq (scRNA-seq) data. Besides, most of the prognostic models are constructed by predictive genes, ignoring other predictive variables such as clinical features. Methods: We obtained scRNA-seq data from GEO database and bulk RNA-seq data from TCGA database. We construct a prognostic model through the Least Absolute Shrinkage and Selection Operator (LASSO) and Cox regression. Furthermore, we performed ESTIMATE, CIBERSORT, immune checkpoint-related analyses and compared drug sensitivity using pRRophetic method judged by IC50 between different risk groups. Results: 14 tumor-related genes were extracted for model construction. The AUC for 1-, 3-, and 5 years overall survival prediction in TCGA and three validation cohorts were almost higher than 0.65, some of which were even higher than 0.7, even 0.8. Besides, calibration curves suggested no departure between model prediction and perfect fit. Additionally, immune-related and drug sensitivity results revealed potential targets and strategies for treatment, which can provide clinical guidance. Conclusion: We integrated traditional bulk RNA-seq and scRNA-seq data, along with predictive clinical features to develop a prognostic model for patients with NSCLC. According to the constructed model, patients in different groups can follow precise and individual therapeutic schedules based on immune characteristics as well as drug sensitivity.

5.
J Cancer Res Clin Oncol ; 149(15): 13823-13839, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37535162

RESUMO

PURPOSE: Cancer stem cells are associated with unfavorable prognosis in hepatocellular carcinoma (HCC). However, existing stemness-related biomarkers and prognostic models are limited. METHODS: The stemness-related signatures were derived from taking the union of the results obtained by performing WGCNA and CytoTRACE analysis at the bulk RNA-seq and scRNA-seq levels, respectively. Univariate Cox regression and the LASSO were applied for filtering prognosis-related signatures and selecting variables. Finally, ten gene signatures were identified to construct the prognostic model. We evaluated the differences in survival, genomic alternation, biological processes, and degree of immune cell infiltration in the high- and low-risk groups. pRRophetic and Tumor Immune Dysfunction and Exclusion (TIDE) algorithms were utilized to predict chemosensitivity and immunotherapy response. Human Protein Atlas (HPA) database was used to evaluate the protein expressions. RESULTS: A stemness-related prognostic model was constructed with ten genes including YBX1, CYB5R3, CDC20, RAMP3, LDHA, MTHFS, PTRH2, SRPRB, GNA14, and CLEC3B. Kaplan-Meier and ROC curve analyses showed that the high-risk group had a worse prognosis and the AUC of the model in four datasets was greater than 0.64. Multivariate Cox regression analyses verified that the model was an independent prognostic indicator in predicting overall survival, and a nomogram was then built for clinical utility in predicting the prognosis of HCC. Additionally, chemotherapy drug sensitivity and immunotherapy response analyses revealed that the high-risk group exhibited a higher likelihood of benefiting from these treatments. CONCLUSION: The novel stemness-related prognostic model is a promising biomarker for estimating overall survival in HCC.

6.
Monoclon Antib Immunodiagn Immunother ; 42(2): 68-72, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37074100

RESUMO

One of G protein-coupled receptors, CC chemokine receptor 3 (CCR3), is expressed in eosinophils, basophils, a subset of Th2 lymphocytes, mast cells, and airway epithelial cells. CCR3 levels in the serum of colorectal cancer patients are significantly higher than in control groups. Moreover, CCR3 is essential for recruiting eosinophils into the lung. Therefore, CCR3 is considered both a therapeutic target for colorectal cancer and allergic diseases. Previously, we established anti-mouse CCR3 (mCCR3) monoclonal antibodies (mAbs), C3Mab-6 (rat IgG1, kappa) and C3Mab-7 (rat IgG1, kappa), by immunizing a rat with an N-terminal peptide of mCCR3. These mAbs can be used in flow cytometry and enzyme-linked immunosorbent assays. In this study, we performed the epitope mapping of C3Mab-6 and C3Mab-7 using alanine scanning. The reactivity between these mAbs and point mutants of mCCR3 were analyzed using flow cytometry. The results indicated that Phe3, Asn4, Thr5, Asp6, Glu7, Lys9, Thr10, and Glu13 of mCCR3 are essential for C3Mab-6 binding, whereas Phe15 and Glu16 are essential for C3Mab-7 binding.


Assuntos
Anticorpos Monoclonais , Neoplasias Colorretais , Animais , Ratos , Receptores CCR3 , Anticorpos Monoclonais/metabolismo , Mapeamento de Epitopos , Eosinófilos/metabolismo , Imunoglobulina G
7.
Monoclon Antib Immunodiagn Immunother ; 42(1): 41-47, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36853838

RESUMO

The epithelial cell adhesion molecule (EpCAM) is a type I transmembrane glycoprotein, and plays critical roles in cell adhesion, proliferation, and tumorigenesis. EpCAM has been considered as a promising target for tumor diagnosis and therapy. Anti-EpCAM monoclonal antibodies (mAbs) have been developed for EpCAM-overexpressed tumors, and several clinical trials have demonstrated promising outcomes. We previously established an anti-EpCAM mAb, EpMab-37 (mouse IgG1, kappa), using the Cell-Based Immunization and Screening method. EpMab-37 was revealed to recognize the conformational epitope of EpCAM. In this study, we determined the critical epitope of EpMab-37 by flow cytometry using the 1 × alanine scanning (1 × Ala-scan) and the 2 × alanine scanning (2 × Ala-scan) method. We first performed flow cytometry by 1 × Ala-scan using one alanine (or glycine)-substituted EpCAM mutants, which were expressed on Chinese hamster ovary-K1 cells, and found that the EpMab-37 did not recognize the R163A mutant of EpCAM. We next performed flow cytometry by 2 × Ala-scan using two alanine (or glycine) residues-substituted EpCAM mutants, and confirmed that EpMab-37 did not recognize R163A-including mutants of EpCAM. The results indicated that the critical binding epitope of EpMab-37 includes Arg163 of EpCAM.


Assuntos
Alanina , Anticorpos Monoclonais , Cricetinae , Animais , Camundongos , Mapeamento de Epitopos , Células CHO , Cricetulus , Epitopos , Glicina
8.
Int J Mol Med ; 51(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36660940

RESUMO

Epithelial cell adhesion molecule (EpCAM) is a type I transmembrane glycoprotein, which is highly expressed on tumor cells. As EpCAM plays a crucial role in cell adhesion, survival, proliferation, stemness, and tumorigenesis, it has been considered as a promising target for tumor diagnosis and therapy. Anti­EpCAM monoclonal antibodies (mAbs) have been developed and have previously demonstrated promising outcomes in several clinical trials. An anti­EpCAM mAb, EpMab­37 (mouse IgG1, kappa) was previously developed by the authors, using the cell­based immunization and screening method. In the present study, a defucosylated version of anti­EpCAM mAb (EpMab­37­mG2a­f) was generated to evaluate the antitumor activity against EpCAM­positive cells. EpMab­37­mG2a­f recognized EpCAM­overexpressing CHO­K1 (CHO/EpCAM) cells with a moderate binding­affinity [dissociation constant (KD)=2.2x10­8 M] using flow cytometry. EpMab­37­mG2a­f exhibited potent antibody­dependent cellular cytotoxicity (ADCC) and complement­dependent cytotoxicity (CDC) for CHO/EpCAM cells by murine splenocytes and complements, respectively. Furthermore, the administration of EpMab­37­mG2a­f significantly suppressed CHO/EpCAM xenograft tumor development compared with the control mouse IgG. EpMab­37­mG2a­f also exhibited a moderate binding­affinity (KD=1.5x10­8 M) and high ADCC and CDC activities for a colorectal cancer cell line (Caco­2 cells). The administration of EpMab­37­mG2a­f to Caco­2 tumor­bearing mice significantly suppressed tumor development compared with the control. By contrast, EpMab­37­mG2a­f never suppressed the xenograft tumor growth of Caco­2 cells in which EpCAM was knocked out. On the whole, these results indicate that EpMab­37­mG2a­f may exert antitumor activities against EpCAM­positive cancers and may thus be a promising therapeutic regimen for colorectal cancer.


Assuntos
Anticorpos Monoclonais , Neoplasias Colorretais , Cricetinae , Humanos , Animais , Camundongos , Anticorpos Monoclonais/uso terapêutico , Células CACO-2 , Xenoenxertos , Molécula de Adesão da Célula Epitelial , Cricetulus , Neoplasias Colorretais/tratamento farmacológico , Imunoglobulina G , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral
9.
Front Oncol ; 12: 1024985, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465405

RESUMO

Most gastric cancers (GC) are adenocarcinomas, whereas GC is a highly heterogeneous disease due to its molecular heterogeneity. However, traditional morphology-based classification systems, including the WHO classification and Lauren's classification, have limited utility in guiding clinical treatment. We performed nonnegative matrix factorization (NMF) clustering based on 2752 metabolism-associated genes. We characterized each of the subclasses from multiple angles, including subclass-associated metabolism signatures, immune cell infiltration, clinic10al characteristics, drug sensitivity, and pathway enrichment. As a result, four subtypes were identified: immune suppressed, metabolic, mesenchymal/immune exhausted and hypermutated. The subtypes exhibited significant prognostic differences, which suggests that the metabolism-related classification has clinical significance. Metabolic and hypermutated subtypes have better overall survival, and the hypermutated subtype is likely to be sensitive to anti-PD-1 immunotherapy. In addition, our work showed a strong connection with previously established classifications, especially Lei's subtype, to which we provided an interpretation based on the immune cell infiltration perspective, deepening the understanding of GC heterogeneity. Finally, a 120-gene classifier was generated to determine the GC classification, and a 10-gene prognostic model was developed for survival time prediction.

10.
Antibodies (Basel) ; 11(4)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36546900

RESUMO

The CC chemokine receptor 3 (CCR3) is a receptor for CC chemokines, including CCL5/RANTES, CCL7/MCP-3, and CCL11/eotaxin. CCR3 is expressed on the surface of eosinophils, basophils, a subset of Th2 lymphocytes, mast cells, and airway epithelial cells. CCR3 and its ligands are involved in airway hyperresponsiveness in allergic asthma, ocular allergies, and cancers. Therefore, CCR3 is an attractive target for those therapies. Previously, anti-mouse CCR3 (mCCR3) monoclonal antibodies (mAbs), C3Mab-3 (rat IgG2a, kappa), and C3Mab-4 (rat IgG2a, kappa) were developed using the Cell-Based Immunization and Screening (CBIS) method. In this study, the binding epitope of these mAbs was investigated using flow cytometry. A CCR3 extracellular domain-substituted mutant analysis showed that C3Mab-3, C3Mab-4, and a commercially available mAb (J073E5) recognized the N-terminal region (amino acids 1-38) of mCCR3. Next, alanine scanning was conducted in the N-terminal region. The results revealed that the Ala2, Phe3, Asn4, and Thr5 of mCCR3 are involved in C3Mab-3 binding, whereas Ala2, Phe3, and Thr5 are essential to C3Mab-4 binding, and Ala2 and Phe3 are crucial to J073E5 binding. These results reveal the involvement of the N-terminus of mCCR3 in the recognition of C3Mab-3, C3Mab-4, and J073E5.

11.
Antibodies (Basel) ; 11(4)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36546899

RESUMO

The epithelial cell adhesion molecule (EpCAM) is a stem cell and carcinoma antigen, which mediates cellular adhesion and proliferative signaling by the proteolytic cleavage. In contrast to low expression in normal epithelium, EpCAM is frequently overexpressed in various carcinomas, which correlates with poor prognosis. Therefore, EpCAM has been considered as a promising target for tumor diagnosis and therapy. Using the Cell-Based Immunization and Screening (CBIS) method, we previously established an anti-EpCAM monoclonal antibody (EpMab-37; mouse IgG1, kappa). In this study, we investigated the antibody-dependent cellular cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC), and an antitumor activity by a defucosylated mouse IgG2a-type of EpMab-37 (EpMab-37-mG2a-f) against a breast cancer cell line (BT-474) and a pancreatic cancer cell line (Capan-2), both of which express EpCAM. EpMab-37-mG2a-f recognized BT-474 and Capan-2 cells with a moderate binding-affinity [apparent dissociation constant (KD): 2.9 × 10-8 M and 1.8 × 10-8 M, respectively] by flow cytometry. EpMab-37-mG2a-f exhibited ADCC and CDC for both cells by murine splenocytes and complements, respectively. Furthermore, administration of EpMab-37-mG2a-f significantly suppressed the xenograft tumor development compared with the control mouse IgG. These results indicated that EpMab-37-mG2a-f exerts antitumor activities and could provide valuable therapeutic regimen for breast and pancreatic cancers.

12.
Monoclon Antib Immunodiagn Immunother ; 41(6): 303-310, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36383113

RESUMO

The C-C chemokine receptor 9 (CCR9) belongs to the G-protein-coupled receptor superfamily, and is highly expressed on the T cells and intestinal cells. CCR9 regulates various immune responses by binding to the C-C chemokine ligand, CCL25, and is involved in inflammatory diseases and tumors. Therefore, the development of sensitive monoclonal antibodies (mAbs) for CCR9 is necessary for treatment and diagnosis. In this study, we established a specific anti-human CCR9 (hCCR9) mAb; C9Mab-11 (mouse IgG2a, kappa), using the synthetic peptide immunization method. C9Mab-11 reacted with hCCR9-overexpressed Chinese hamster ovary-K1 (CHO/hCCR9) and hCCR9-endogenously expressed MOLT-4 (human T-lymphoblastic leukemia) cells in flow cytometry. The dissociation constant (KD) of C9Mab-11 for CHO/hCCR9 and MOLT-4 cells were determined to be 1.2 × 10-9 M and 4.9 × 10-10 M, respectively, indicating that C9Mab-11 possesses a high affinity for both exogenously and endogenously hCCR9-expressing cells. Furthermore, C9Mab-11 clearly detected hCCR9 protein in CHO/hCCR9 cells using western blot analysis. In summary, C9Mab-11 can be a useful tool for analyzing hCCR9-related biological responses.


Assuntos
Anticorpos Monoclonais , Linfócitos T , Camundongos , Animais , Cricetinae , Células CHO , Cricetulus , Imunização
13.
Monoclon Antib Immunodiagn Immunother ; 41(6): 343-349, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36383115

RESUMO

The CC chemokine receptor 6 (CCR6) is a G protein-coupled receptor family member that is highly expressed in B lymphocytes, certain subsets of effector and memory T cells, and immature dendritic cells. CCR6 has only one chemokine ligand, CCL20. The CCL20-CCR6 axis has been recognized as a therapeutic target for autoimmune diseases and tumor. This study developed specific monoclonal antibodies (mAbs) against mouse CCR6 (mCCR6) using the peptide immunization method. The established anti-mCCR6 mAb, C6Mab-13 (rat IgG1, kappa), reacted with mCCR6-overexpressed Chinese hamster ovary-K1 (CHO/mCCR6), and mCCR6-endogenously expressed P388 (mouse lymphoid neoplasma) and J774-1 (mouse macrophage-like) cells in flow cytometry. The dissociation constant (KD) of C6Mab-13 for CHO/mCCR6 cells was determined to be 2.8 × 10-9 M, indicating that C6Mab-13 binds to mCCR6 with high affinity. In summary, C6Mab-13 is useful for detecting mCCR6-expressing cells through flow cytometry.


Assuntos
Proteínas Inflamatórias de Macrófagos , Receptores CCR6 , Animais , Ratos , Cricetinae , Proteínas Inflamatórias de Macrófagos/metabolismo , Receptores CCR6/metabolismo , Células CHO , Anticorpos Monoclonais , Cricetulus , Imunização
14.
Monoclon Antib Immunodiagn Immunother ; 41(6): 339-342, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36346278

RESUMO

CC chemokine receptor type-2 (CCR2) is a member of the G protein-coupled receptors, and is mainly expressed on cell surface of immune cells. CCR2 binds to its ligand, C-C motif chemokine 2 (also named as monocyte chemoattractant protein-1), which involves in the tumor progression by modulating the tumor microenvironment. Therefore, the monoclonal antibody (mAb) targeting CCR2 could be one of the strategies for cancer treatment. In this study, we investigated the critical epitope of C2Mab-6, an anti-mouse CCR2 (mCCR2) mAb developed by N-terminal peptides immunization. We first performed enzyme-linked immunosorbent assay (ELISA) using N-terminal peptides of mCCR2 and demonstrated that C2Mab-6 recognizes 1-19 amino acids of mCCR2. We further performed ELISA using 20 alanine-substituted peptides of mCCR2. C2Mab-6 lost the reaction to the alanine-substituted peptides of D3A, N4A, M6A, P8A, Q9A, and F10A. These results indicate that the binding epitope of C2Mab-6 includes Asp3, Asn4, Met6, Pro8, Gln9, and Phe10 of mCCR2.


Assuntos
Anticorpos Monoclonais , Receptores de Quimiocinas , Mapeamento de Epitopos , Peptídeos/química , Ensaio de Imunoadsorção Enzimática , Epitopos
15.
Monoclon Antib Immunodiagn Immunother ; 41(5): 285-289, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36301190

RESUMO

CC chemokine receptor type-2 (CCR2) belongs to the G protein-coupled receptors superfamily, and is localized on cell surface of tumor cells and some immune cells, including monocytes and macrophages. CCR2 is a receptor for monocyte chemoattractant protein-1/C-C motif chemokine 2, and is involved in the progression of various diseases such as cancers. Therefore, the development of CCR2-targeted monoclonal antibody (mAb) is desired. Its characterization, including epitope of mAb, is very important for antibody applications. In this study, we investigated the critical epitope of K036C2, which is a commercially available anti-human CCR2 (hCCR2) mAb. We conducted enzyme-linked immunosorbent assay (ELISA) using three N-terminal peptides of hCCR2 and demonstrated that K036C2 recognizes 11-29 and 21-39 amino acids of hCCR2. We further performed ELISA using 20 peptides, which include alanine substitution of hCCR2. K036C2 lost the reaction to the alanine-substituted peptides of D25A, Y26A, D27A, G29A, and A30G. These results indicate that the critical binding epitope of K036C2 includes Asp25, Tyr26, Asp27, Gly29, and Ala30 of hCCR2.


Assuntos
Quimiocina CCL2 , Receptores CCR2 , Mapeamento de Epitopos , Receptores CCR2/genética , Receptores CCR2/metabolismo , Quimiocina CCL2/metabolismo , Anticorpos Monoclonais , Epitopos , Alanina
16.
Monoclon Antib Immunodiagn Immunother ; 41(5): 275-278, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36301196

RESUMO

The CXC chemokine receptor 6 (CXCR6) is a member of the G protein-coupled receptor family that is highly expressed in helper T type 1 cells, cytotoxic T lymphocytes (CTLs), and natural killer cells. CXCR6 plays critical roles in local expansion of effector-like CTLs in tumor microenvironment to potentiate the antitumor response. Therefore, the development of anti-CXCR6 monoclonal antibodies (mAbs) is essential to evaluate the immune microenvironment of tumors. Using N-terminal peptide immunization, we previously developed an anti-mouse CXCR6 (mCXCR6) mAb, Cx6Mab-1 (rat IgG1, kappa) , which is useful for flow cytometry and western blotting. In this study, we determined the critical epitope of Cx6Mab-1 by enzyme-linked immunosorbent assay (ELISA) using the 1 × alanine scanning (1 × Ala-scan) method or the 2 × alanine scanning (2 × Ala-scan) method. Although we first performed ELISA by 1 × Ala-scan using one alanine-substituted peptides of mCXCR6 N-terminal domain (amino acids 1-20), we could not identify the Cx6Mab-1 epitope. We next performed ELISA by 2 × Ala-scan using two alanine (or glycine) residues-substituted peptides of mCXCR6 N-terminal domain, and found that Cx6Mab-1 did not recognize S8A-A9G, A9G-L10A, L10A-Y11A, and G13A-H14A of the mCXCR6 N-terminal peptide. The results indicate that the binding epitope of Cx6Mab-1 includes Ser8, Ala9, Leu10, Tyr11, Gly13, and His14 of mCXCR6. Therefore, we could demonstrate that the 2 × Ala scan method is useful for determining the critical epitope of mAbs.


Assuntos
Alanina , Anticorpos Monoclonais , Animais , Ratos , Mapeamento de Epitopos/métodos , Receptores CXCR6 , Epitopos , Ensaio de Imunoadsorção Enzimática , Peptídeos
17.
Cell Death Dis ; 13(9): 781, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-36085146

RESUMO

Zinc finger proteins (ZNFs) have been demonstrated to participate extensively in breast cancer progression by functioning as transcription factors, but there are still a variety of ZNFs whose biological mechanisms remain unknown. Here, we show that zinc finger protein 276 (ZNF276) is highly expressed in breast cancer tissues and cell lines. Higher level of ZNF276 correlated with poor prognosis. Gain-of and loss-of function suggested that ZNF276 is essential for the proliferation, migration and invasion of breast cancer cells in vitro and metastasis in vivo. RNA-sequencing and CUT&Tag assay revealed that ZNF276 controlled a variety of growth and metastasis-related genes expression. ZNF276 transcriptionally promoted the expression of CYP1B1 by directly binds to the promoter region of the CYP1B1 through its C2H2 domain. ZNF276 facilitated the translocation of ß-catenin from cytoplasm to nucleus through CYP1B1, leading to the upregulation of cyclin D1 and c-Myc, and the activation of the Wnt/ß-catenin pathway. Knockdown of CYP1B1 significantly blocked the ZNF276-mediated effects on cell proliferation, migration and invasion. Lastly, ZNF276 interacted with MAGEB2 which enhanced the binding of ZNF276 at the CYP1B1 promoter, promoted CYP1B1 expression and Wnt signaling activation. Collectively, these findings highlight the oncogenic role of ZNF276 on breast cancer cell proliferation and metastasis. Targeting ZNF276/MAGEB2 axis may serve as a potential therapeutic strategy for breast cancer patients.


Assuntos
Via de Sinalização Wnt , beta Catenina , Oncogenes , Fenótipo , Fatores de Transcrição , Via de Sinalização Wnt/genética , beta Catenina/genética
18.
ACS Appl Mater Interfaces ; 14(32): 36656-36667, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35925802

RESUMO

The nickel-rich cathode LiNi0.8Co0.1Mn0.1O2 (NCM811) is deemed as a prospective material for high-voltage lithium-ion batteries (LIBs) owing to its merits of high discharge capacity and low cobalt content. However, the unsatisfactory cyclic stability and thermostability that originate from the unstable electrode/electrolyte interface restrict its commercial application. Herein, a novel electrolyte composed of a polyethylene (PE) supported poly(vinylidene fluoride-co-hexafluoropropylene) (P(VdF-HFP)) based gel polymer electrolyte (GPE) strengthened by a film-forming additive of 3-(trimethylsilyl)phenylboronic acid (TMSPB) is proposed. The porous structure and good oxidative stability of the P(VdF-HFP)/PE membrane help to expand the oxidative potential of GPE to 5.5 V compared with 5.1 V for the liquid electrolyte. The developed GPE also has better thermal stability, contributing to improving the safety performance of LIBs. Furthermore, the TMSPB additive constructs a low-impedance and stable cathode electrolyte interphase (CEI) on the NCM811 cathode surface, compensating for GPE's drawbacks of sluggish kinetics. Consequently, the NCM811 cathode matched with 3% TMSPB-containing GPE exhibits remarkable cyclicity and rate capability, maintaining 94% of its initial capacity after 100 cycles at a high voltage range of 3.0-4.35 V and delivering a capacity of 133.5 mAh g-1 under 15 C high current rate compared with 68% and 75.8 mAh g-1 for the one with an additive-free liquid electrolyte. By virtue of the enhanced stability of the NCM811cathode, the cyclability of graphite||NCM811 full cell also increases from 48 to 81% after 100 cycles. The incorporation of P(VdF-HFP)-based GPE and TMSPB electrolyte additive points out a viable and convenient pathway to unlock the properties of high energy density and satisfactory safety for next-generation LIBs.

19.
Monoclon Antib Immunodiagn Immunother ; 41(4): 188-193, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35917563

RESUMO

The CC chemokine receptor type-2 (CCR2) is one of the members of the G protein-coupled receptor superfamily, which are expressed on the cell surface of immune and tumor cells. CCR2 binds to the C-C motif chemokine ligand 2 (CCL2)/monocyte chemoattractant protein-1 (MCP-1), which is produced by various cells, including tumor and immune-related cells. Therefore, the development of sensitive monoclonal antibodies (mAbs) for CCR2 has been desired for treatment and diagnosis. In this study, we established a specific antihuman CCR2 (hCCR2) mAb, C2Mab-9 (mouse IgG1, kappa), using the synthetic peptide immunization method. Flow cytometric and immunocytochemical results showed that C2Mab-9 reacted with hCCR2-expressing U937 (human histiocytic lymphoma) and natural killer cells. Furthermore, C2Mab-9 showed the moderate binding affinity for both cells. Conclusively, C2Mab-9 can be a useful tool for analyzing hCCR2-related biological responses.


Assuntos
Anticorpos Monoclonais , Receptores CCR2 , Animais , Imunização , Camundongos , Peptídeos
20.
Antibodies (Basel) ; 11(2)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35735360

RESUMO

The epithelial cell adhesion molecule (EpCAM) is a cell surface glycoprotein, which is widely expressed on normal and cancer cells. EpCAM is involved in cell adhesion, proliferation, survival, stemness, and tumorigenesis. Therefore, EpCAM is thought to be a promising target for cancer diagnosis and therapy. In this study, we established anti-EpCAM monoclonal antibodies (mAbs) using the Cell-Based Immunization and Screening (CBIS) method. We characterized them using flow cytometry, Western blotting, and immunohistochemistry. One of the established recombinant anti-EpCAM mAbs, recEpMab-37 (mouse IgG1, kappa), reacted with EpCAM-overexpressed Chinese hamster ovary-K1 cells (CHO/EpCAM) or a colorectal carcinoma cell line (Caco-2). In contrast, recEpMab-37 did not react with EpCAM-knocked out Caco-2 cells. The KD of recEpMab-37 for CHO/EpCAM and Caco-2 was 2.0 × 10-8 M and 3.2 × 10-8 M, respectively. We observed that EpCAM amino acids between 144 to 164 are involved in recEpMab-37 binding. In Western blot analysis, recEpMab-37 detected the EpCAM of CHO/EpCAM and Caco-2 cells. Furthermore, recEpMab-37 could stain formalin-fixed paraffin-embedded colorectal carcinoma tissues by immunohistochemistry. Taken together, recEpMab-37, established by the CBIS method, is useful for detecting EpCAM in various applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA